Identification and analysis of OsttaDSP, a phosphoglucan phosphatase from Ostreococcus tauri
نویسندگان
چکیده
Ostreococcus tauri, the smallest free-living (non-symbiotic) eukaryote yet described, is a unicellular green alga of the Prasinophyceae family. It has a very simple cellular organization and presents a unique starch granule and chloroplast. However, its starch metabolism exhibits a complexity comparable to higher plants, with multiple enzyme forms for each metabolic reaction. Glucan phosphatases, a family of enzymes functionally conserved in animals and plants, are essential for normal starch or glycogen degradation in plants and mammals, respectively. Despite the importance of O. tauri microalgae in evolution, there is no information available concerning the enzymes involved in reversible phosphorylation of starch. Here, we report the molecular cloning and heterologous expression of the gene coding for a dual specific phosphatase from O. tauri (OsttaDSP), homologous to Arabidopsis thaliana LSF2. The recombinant enzyme was purified to electrophoretic homogeneity to characterize its oligomeric and kinetic properties accurately. OsttaDSP is a homodimer of 54.5 kDa that binds and dephosphorylates amylopectin. Also, we also determined that residue C162 is involved in catalysis and possibly also in structural stability of the enzyme. Our results could contribute to better understand the role of glucan phosphatases in the metabolism of starch in green algae.
منابع مشابه
Ostreococcus tauri: seeing through the genes to the genome.
The marine green alga Ostreococcus tauri is the smallest-known free-living eukaryote. The recent sequencing of its genome extends this distinction, because it also has one of the smallest and most compact nuclear genomes. For other highly compacted genomes (e.g. those of microsporidian parasites and relic endosymbiont nucleomorphs), compaction is associated with severe gene loss. By contrast, O...
متن کاملOstreococcus tauri is cobalamin-independent
The marine microalga Ostreococcus is considered to depend on the methionine synthase METH and its methylated cobalamin cofactor for methionine synthesis. Here I describe minimal media lacking both cobalt and cobalamin yet suitable for clonal growth of Ostreococcus tauri. Because Ostreococcus lacks the methylcobalamin-independent methionine synthase METE, Ostreococcus growth without cobalamin is...
متن کاملShotgun proteomic analysis of the unicellular alga Ostreococcus tauri.
Ostreococcus tauri is a unicellular green alga and amongst the smallest and simplest free-living eukaryotes. The O. tauri genome sequence was determined in 2006. Molecular, physiological and taxonomic data that has been generated since then highlight its potential as a simple model species for algae and plants. However, its proteome remains largely unexplored. This paper describes the global pr...
متن کاملA robust two-gene oscillator at the core of Ostreococcus tauri circadian clock.
The microscopic green alga Ostreococcus tauri is rapidly emerging as a promising model organism in the green lineage. In particular, recent results by Corellou et al. [Plant Cell 21, 3436 (2009)] and Thommen et al. [PLOS Comput. Biol. 6, e1000990 (2010)] strongly suggest that its circadian clock is a simplified version of Arabidopsis thaliana clock, and that it is architectured so as to be robu...
متن کاملGenome sequence of Ostreococcus tauri virus OtV-2 enlightens the role of picoeukaryote niche separation in the ocean Running title: Genome sequence of a low light Ostreococcus tauri virus
Ostreococcus tauri, a unicellular marine green alga, is the smallest known free-living eukaryote and is ubiquitous in the surface oceans. The ecological success of this organism has been attributed to distinct lowand high-light adapted ecotypes existing in different niches at a range of depths in the ocean. Viruses have already been characterised that infect the high-light adapted strains. Ostr...
متن کامل